(3y^2)+3y=135

Simple and best practice solution for (3y^2)+3y=135 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (3y^2)+3y=135 equation:



(3y^2)+3y=135
We move all terms to the left:
(3y^2)+3y-(135)=0
a = 3; b = 3; c = -135;
Δ = b2-4ac
Δ = 32-4·3·(-135)
Δ = 1629
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1629}=\sqrt{9*181}=\sqrt{9}*\sqrt{181}=3\sqrt{181}$
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-3\sqrt{181}}{2*3}=\frac{-3-3\sqrt{181}}{6} $
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+3\sqrt{181}}{2*3}=\frac{-3+3\sqrt{181}}{6} $

See similar equations:

| −2.5(3x−4)=32.5 | | -2v+7=-1(v+1) | | 13=-4k+913=-4k+9 | | -7(3y+2)=2(4y-5 | | 3(-3+6r)=4r+19 | | 5(2n-3)-3=6 | | -3(1-6p)-3p=-21+6p | | -5(m-4)=25 | | -128=8(6m-4) | | v-4=-13 | | -6(-2n-1)=5n+27 | | 6(2p-3)=6 | | -2(2x+4)+10=8x+4 | | 22-2e=1e | | -6=4+1/2x | | 9+a=3 | | 69+a=3 | | 8/y+8=y/6 | | 214+n=-4 | | x^2–9=27 | | 7(a+4)=3a+8 | | 2.5x+1.5=17.5 | | 2(7d+3d-7=53 | | 1x(+60)=20 | | 14+n=-4 | | 0.5x+x-6=24 | | a-23=-7 | | 10=2x^2+9x | | (x/3)+6=-2 | | 5*5/2+y=8 | | 7x5=4x+6 | | -3y-6=10+9y |

Equations solver categories